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Abstract. We present a theoretical study of resonant tunnelling in the double-barrier struc- 
ture under the application of a constant electric field, based upon an exact solution of the 
Schrodinger equation. By using the transfer matrix technique, the transmission coefficient 
of the structure is determined as a function of the applied voltage and the incident electron 
energy. The current-voltage characteristics in the case of bulk carriers tunnelling into a two- 
dimensional quantum well and, for the first time, in the case of two-dimensional electrons 
tunnelling into a one-dimensional quantum wire are also calculated. The influence of the 
symmetry of the structure is studied. It is concluded that a larger peak-to-valley ratio can be 
expected by mere modulation of the width of the barrier. 

1. Introduction 

The study of resonant tunnelling in quantum well structures was pioneered by Tsu et a1 
[l]. There has been renewed interest in it in the past few years, both experimentally 
and theoretically [2-131. Devices based upon resonant tunnelling have found wide 
applications, such as photodetectors, transistors, light emitters and low-power logic 
circuits [2-131. The most thoroughly studied material system as applied to double-barrier 
structures is the GaAs/Al, -,Ga,As system owing to the relative ease of its fabrication 
as well as its close lattice matching. Recently a double-barrier structure constructed of 
an ultrathin hydrogenated amorphous silicon (a-Si : H) layer sandwiched with hydro- 
genated amorphous stoichiometric silicon nitride (a-Si3N4 : H) barriers has been fab- 
ricated successfully and electron resonant tunnelling has been observed [9]. 

Tsu et a1 first provided a theoretical description of the electron tunnelling in a finite 
superlattice [ 11. Their calculation involves the solution of the Schrodinger equation in 
each region of the device under the assumptions that the applied bias is small, the 
effective mass is constant throughout, and phonon scattering can be neglected. They 
were able to correlate the energy location of the transmissivity peaks with the bound- 
state energies of the structure, and thus to attribute the negative resistance predicted by 
the current-voltage (I-V) plots to resonant tunnelling. 

Recently, a theoretical study was presented in [15] of resonant tunnelling in a multi- 
layered heterostructure based on an exact solution of the Schrodinger equation under 
the application of a constant electric field. By use of the Airy function and the transfer 
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matrix technique, the transmissivity of the structure is determined as a function of the 
incident electron energy. 

The effect of an applied electric field was considered in [16], and it was shown that 
with fully symmetrical barriers it leads to weaker resonances than otherwise possible. It 
is concluded that better structures can be designed to maximise resonance peaks but it 
is essential to take into account the effects of the field. Furthermore, because the field 
cancels the intrinsic simple symmetry, optimisation can only be performed for one of 
the possible several peaks. 

The organisation of this paper is as follows. In § 2, we present calculations of the 
transmission coefficient as a function of the incident electron energy, and the energy of 
a selected peak as a function of the applied voltage; a comparison with those in [15] is 
given. In 0 3, numerical considerations are presented of the effects of the electric field 
and the structural geometry on the transmission coefficient. In § 4 the Z-Vcharacteristics 
of the double-barrier structures are calculated for bulk carriers tunnelling into a two- 
dimensional well (i.e. the 3D-2D case) and for two dimensional electrons tunnelling into 
a one-dimensional quantum wire (i.e. the 2 ~ - 1 ~  case). Finally, in 8 5 ,  some conclusions 
are drawn. 

2. Calculations of the transmissivity 

To calculate the transmission coefficient, the following assumptions have to be made 
first. 

(i) The effective-mass approximation is valid and electrons are described by quadratic 

(ii) The electron mean free path is longer than the size of the double-barrier structure. 
(iii) Conditions are such that the field pattern is uniform. 
(iv) The effects of phonon scattering are negligible. 

The Schrodinger equation of a particle in a uniform electric field has a solution which 
can be expressed as a linear combination of Bessel functions. So the calculation is 
performed by solving the Schrodinger equation exactly in each region and then matching 
the continuity of the wavefunction 11, and ( l /m)(d~/~/dx)  for its derivative at each 
boundary [ 17-19]. 

A representative double-barrier structure with an applied bias is diagrammatically 
presented in figure l (b) .  The solution in region 1 is simply a linear combination of an 
incident and a reflected plane wave: 

energy-momentum relations. 

$, = exp(ikx) + R exp( -ikx) (1) 

where k = v m  and ma is the effective mass in the well. With the following 
notation and transformation of variables 

= ( 2 m b ) 1 / 3 ( ~  - ~ , , ) / ( f i e ~ ) ~ / ~  E b  = x / L  + /Zb 

L = (fi2/2mbe~)1’3 z = ($)1Eb13’2 

the Schrodinger equation in region 2 can be written as 

u y z >  + ( l / Z ) L d ( f )  + [1 * ( + > * / Z * ] U ( Z )  = 0 (2) 
where Vo is the barrier height, mb the effective mass in the barrier and F =  
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V/(A, + Bol + BO2) the electric field caused by the applied voltage V. When &, 3 0, the 
wavefunction can be written as 

V2 = 5f/2[c:J1/3(z) + c,yi/3(z)] (3) 

whereJli3 and Y1/3 are Bessel functions with order $ of the first kind and the second kind, 
respectively. When E h  < 0, the wavefunction can be written as 

v2 = t E b  1 1/2{[-c: 11/3 (2) + [(2/n)K1/3 (2) - fi I1/3(2)1) (4) 

where Z113 and K1/3 are modified Bessel functions with order d of the first kind and the 
second kind, respectively. The continuity of wavefunction and its derivative at Eb = 0 is 
now considered. Letting 

the wavefunction has the following form: 

?42 = c; B: ( x )  + c, B ,  ( x ) ,  

Similarly, with the following notation and transformation of variables 

A, = ( 2 m , ) 1 / 3 ~ / ( t i e ~ ) 2 / 3  

L = ( t ~ ~ / 2 m , e F ) ' / ~  

y = (#)g;/2 

U " ( Y )  + ( l / Y ) U ' ( Y )  + [ 1  - (1/3)2/Y21U(Y> = 0 

5, = x / L  + A ,  

y = &kk/2 

the Schrodinger equation in region 3 can be written as 

and the wavefunction as 

I j f 3  = C;A; (x )  + C ; A , ( X )  

where A ;  ( x )  and A 3 ( x )  are defined as 

The wavefunction in region 4 has the same form as in region 2: 

7)4 = cif?; ( x )  + c, B;  ( x ) .  

In region 5 ,  only the transmission plane wave is included: 

I/J~ = z exp(ik'x) 

where k' = q2m,(E + eV)/h2, Vbeing the applied voltage. 
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Figure 1. Potential energy diagram of a 
double-barrier structure: (a )  no applied 
voltage; ( b )  with an applied voltage. 

The boundary conditions at x = 0 gives [ 17-19] 

1 + R = c:B:(x = 0 )  + C;B;(x  = 0) 

(mb/ma)ik(l  - R )  = C:B:’(n = 0 )  + C;B;’(x  = 0) 

which in matrix form becomes 

Extending the analysis to other interfaces gives 

where the matrix S is 

S = S ~ ( X  = O)S;’ (x  = Bol>S, (x  = Bol)S;’(x = Ao + Bel) 

x S ~ ( X  = A 0  + Bo, )S ; ’ (x  = A 0  + Bo1 + Bo*) 

and the matrices S 2 ( x )  and S3(x )  are defined as 

The transmission coefficient can be found as 

T = Z Z ”  = ( 4 k / k ’ ) / [ S , ,  + k ’ / / ~ S 2 2 ) ~  + (S21/k - k’S, , )*]  

where SI2, SI1, SZl and S12 are elements of the matrix S. 
The logarithm of the transmission coefficient as a function of the electron energy in 

a double-barrier structure made from GaAs/Al, -,Ga,As is presented in figure 2. Next 
we compare our results with the results obtained in [15]; the structure analysed and the 
boundary conditions used are identical with their case. The calculation is performed 
under two conditions. 

(i) The masses in the well and two barriers are assumed to be equal to the GaAs 

(ii) Different masses in the layer are considered: ma = 0.067 mo; mb = 0.1087 mo. 

The applied bias is 0.16 V. In figure 2, two resonant peaks appear in the transmission 
coefficient. The calculation is repeated at a higher voltage, 0.4 V, in figure 3. In this 
case, only one peak occurs in the transmission coefficient. The results show that the 

mass: ma = mb = 0.067 mo. 
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Figure 2. Logarithm of the transmission coefficient as a 
function of the incident electron energy at an applied 
bias of 0.16V (Vfl=0.5eV; B n , = B f 1 2 = 2 0 A ;  Ao= 
50 A): -, m, = 0.067mn, mb = 0.067mfl; ---, m, = 
0.067mo, mb = 0. 1087mn. 
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Figure 3. Logarithm of the transmission coef- 
ficient as afunction of theincident electronenergy 
at an applicd bias of 0.4 V. (V, = 0.5 eV; B,, = 
Boz = 20 A; An =i 50 A): -, ma = 0.067mo, 
mb = 0.067mo; --- , m, =0.067mfl, m b =  
0. 1087mn. 

resonant energies are shifted upwards in the two-mass model from those calculated using 
the one-mass model. 

We compare our calculated transmission coefficients with those in [ 151. From figures 
2 and 3, it can be seen that the results here differ from those in [15] in that there is not 
so much fine structure and there are small deviations in the locations of the transmission 
coefficient peaks. Even though different methods may yield small differences in the 
numerical results, our calculated curves of transmission coefficient are quite smooth and 
do not contain small lumps and bumps apart from the resonant peaks. We strongly 
believe that the results in [15] must be incorrect. As the limit of Vapproaches zero, the 
transmissivity should be the same as that calculated in [l] which is clearly a smooth 
function of the incident energy outside the resonant peaks or depends on the exper- 
imental data of the I-V characteristics which show that a negative differential resistance 
appears only at a voltage corresponding to a transmission coefficient peak [lo, 121. 

A plot of the energy of the lower-energy peak against the applied voltage is shown 
in figure 4. The higher the bias, the lower is the resonant energy because the conduction 
band bends under the action of the applied voltage. The lower-energy peak disappears 
when the applied voltage is greater than 0.2 V. Unexpectedly a linear relationship is 
obtained in our calculation, as shown in figure 4. Why this happens is an open question. 
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Figure4. The resonant energy of the lower-energy 
peak as a function of the applied bias (V ,  = 
0.5 eV; Bol = B,  = 20 A; A" = 50 A; ma = mb = 
0.067m"). 

3. Effects of the structural symmetry 

The effect of an applied electric field on the symmetry of the double-barrier structure 
was first considered in [ 161. With the assumption of strong localisation, they showed that 
the resonant global transmission coefficient of a two-rectangle potential energy barrier 
becomes 

TGres 2: TminlTmax (17) 
where Tmin and T,,, represent the smaller and the larger of the transmission coefficients 
of the left and the right barrier, respectively. Therefore, it can be concluded that, 
regardless of how small Tmin and T,,, are, the order of magnitude of the transmission 
coefficient Tcan be unity under the only condition Tmin = Tma,. In the absence of a field, 
with Bol = B02 (as depicted in figure l(a)), resonance would occur at energies satisfying 

B ~ ~ v ~ P @ P  = 2  tan-'[(^, - E)/E]'/' + (n - 11.7~ (18) 
because of the symmetry of the structure. These concepts were generalised in [16] to the 
general case of a double-barrier structure with an applied bias (as depicted in figure 
l(b)). With the use of the WKB approximation the transmission coefficients of the left 
and the right barrier are, respectively, 

T ,  = exp[(-4/3fi>V%F(~i/~ - v: l2>/e~]  

T ,  = e x p [ ( - 4 / 3 f i ) W ( ~ ; / ~  - v',/')/~F] 
(19) 

where Vo is the barrier height 

VI = Vo - eFBol 

V2 = Vo - eF(Bol +AoI )  

V3 = Vo - eF(Bol + Aol + Bo2) 

T~~,,/T,,, =exp[-(4/3t i )~ '%P(~~/~ - vi/* - v:/~ + v:/~)/~F]. 

Since T, < T, for Bol = BO2, we have 

(20) 
Because the applied voltage destroys the symmetry of the barriers, the transmission 
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Figure 5. Logarithm of the transmission coef- 
ficient as a function of the electron energy for 
selected geometries at an applied bias of 0.16 V 
(Vo = 0.5 eV; A .  = S O &  m, = mb = 0.067m0): 
- , Bol = 17 A; Boz = 23 A; ---, Bol = 23 A; 
Bm = 17 A. 
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Figure 6. Logarithm of the transmission coef- 
ficient as a function of the applied voltage for 
selected geometries (electron energy E = 
0.005 eV; Vo = 0.5 eV; A .  = 50 A; ma = mb = 
0.067mo): -, Bo1 = Bo2 = 2 0 A ;  ---. Bol = 
23 A; BO2 = 17 A. 

coefficients of the latter are no longer equal and lead to a drastic reduction in the effects 
at resonance with respect to the optimal possible condition. By use of a non-symmetrical 
structure with the left barrier thinner than the right barrier, the condition for T, = T, 
might be recreated, thus enhancing the resonant tunnelling. 

Figure 5 presents the logarithm of the transmission coefficient as a function of the 
electron energy for selected geometries, with the applied voltage being 0.16 V. For the 
full curve, asymmetry due to the width of the barrier cancels that from the effect of the 
applied voltage, and as a result the resonance is enhanced. Also the resonant energies 
can be seen to shift to higher energies when the left barrier is thinner than the right 
barrier. 

Figure 6 shows the calculated transmission coefficient as a function of the applied 
voltage for selected geometries with the electron energy E being chosen to be 0.005 eV. 
The full curve is calculated for a symmetrical structure with the left barrier equal to the 
right barrier, while the broken curve is for a non-symmetrical structure with the left 
barrier thinner than the right barrier. A reduction in transmission coefficient is observ- 
able owing to the asymmetry due to the barrier width and to the electric field effect. The 
exact result of the transmission coefficient calculated here is larger by several orders of 
magnitude than that calculated in [16] using the WKB approximation. 

4. Current-voltage characteristics 

To calculate the current density, we first recall the dimensionality of resonant tunnelling 
in the double-barrier structure. In the most thoroughly studied structure, as originally 
proposed in [l], the current is controlled solely by the source-to-drain voltage and the 
bulk carriers tunnelling into two dimensional states in a quantum well (the ~D-ZD case). 
In the new structure, as recently proposed in [8], the current is controlled not only by 
the source-to-drain voltage but also by the gate voltage. So the quantum well is linear 
rather than planar and the two-dimensional electrons tunnel into one-dimensional states 
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(the 2D-1D case). We refer to the source-to-drain voltage as the applied bias and the gate 
voltage has such avalue that the two-dimensionality of the channel is sustained hereafter. 
It is obvious that the electron density is controlled by the gate voltage as well as being 
an intrinsic property of the material with which the structure is made. 

Generally, the current density J may be computed as the average of the product of 
transmission coefficient Tand the group velocity U = h-'VkE: 

J = 2e/(2n)d 1 d k d  V(k)T(E,, E,)[f(E) - f (E + eV)] (21) 

wheref(E) = [l + exp(E - EF)/kB8]-I is the Fermi-Dirac distribution at the absolute 
temperature 6 with EF being the Fermi energy and kB the Boltzmann constant. The 
dimensionality d is equal to 3 or to 2 for the 3 ~ - 2 ~  and 2 ~ - 1 ~  cases, respectively. The 
transverse components of J are zero by symmetry and, after a change in variable from 
momentum to energy, the longitudinal component becomes 

""IIdE, d E ,  T(E, ,  El)[f(E) - f ( e  + eV)] 

dE ,  d E I  T(E, ,  El)[f(E) - f ( e  + eV)] 

3 ~ - 2 ~ c a s e  

(22) 
2D-1D case 

In the 3 ~ - 2 ~  case, the above expression for 8 + 0 becomes 
r 1 ""~~F(EF-E,)T(E,, (242n  3 E l ) d E i  e V 3  EF 

and in the ~ D - I D  case for 6 -  0 it becomes 

( E F  - eV - E1)'/2T(Ef, E l )  d E i  . ~ V < E F  i 
The ~D-ZD current density is the same as that obtained in [l]. It can be seen that the 

current density integration depends on the energy differently in different cases and is 
the main difference between the 3 ~ - 2 ~  and the 2 ~ - 1 ~  case. 

Figures 7 and 8 show the calculated current density at zero temperature for a double- 
barrier structure in the 3D-2D and 2 ~ - 1 ~  cases as a function of the applied voltage, 
respectively. Note that, in both cases, the current density shows an oscillatory behaviour 
as the applied voltage is increased. A maximum in current density, accompanied by a 
region of negative differential conductance, appears at a voltage when the quasi-eigen- 
energy in the well matches the Fermi energy of the electrons. Unexpectedly, the shapes 
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Figure 7. Logarithm of the 3D-ZD current densityJ(em*/2nZfi3)-' (1.6 X 10-19)2 as a function 
of the applied voltage at zero temperature ( V o  = 0.5 eV; Bol = Ba2 = 20 A; A .  = 50 A; ma = 
inb = 0.067mo; EF = 0.005 eV). 
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Figure 8. Logarithm of the 2D-lD current density J(eV77 /8 /n2f i2 ) -"  (1.6 X 10-19)3'2 as a 
function of the applied voltage at zero temperature (V, = 0.5 eV; Bol = Bo2 = 20 A; A ,  = 
50 A; m, = mb = 0.067mo; EF = 0.005 eV). 

of these two plots are almost identical with maxima and minima appearing at almost the 
same energies. This can be understood as follows. The expressions for] suggest that the 
shape of J against the applied voltage depends, on the competition between the voltage 
dependence of the transmission coefficient and that of the energy. In our computations, 
EF is assumed to have a low value of 0.005 eV such that the transmission coefficient 
varies smoothly with energy as shown in figures 2 and 3. 

In fact, as shown in figure 6 ,  the transmission coefficient varies considerably with the 
applied voltage even at such low energies. Consequently, it can be expected that the 
I-V characteristic has approximately the same shape as that of the I-V curve. It is also 
expected that differences between the shapes of I-V characteristics for the 3D-2D and 
2D-ID cases should be more pronounced at higher Fermi energies. 

Figure 9 shows the calculated peak-to-valley ratios for the first peak and valley as a 
function of the geometrical parameter BO2/Bo1 with the condition BOl + Bo* = constant. 
Overall increases in the peak-to-valley ratios can be seen as Bm/BO1 is increased for both 
the 3 D 2 D  and the 2 ~ - 1 ~  cases and the peak-to-valley ratio for the 3D-2D case is generally 
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Figure 9. Peak-to-valley ratios as a function of 
Bo2/B,,withBfl, + Bfl ,=40A(Vo=0.5eV;Afl= 
50 A; m, = mb = 0.067m0; EF = 0.005 eV). 

larger than that for the 2 ~ - 1 ~  case. So it can be said that we can choose the barrier width 
(Bel < Bo2) to give a larger peak-to-valley ratio which is essential in applications to logic 
circuits 181. 

5. Conclusion 

We have presented a solution to the resonant tunnelling problem in the double-barrier 
structure based upon the exact solution of the Schrodinger equation by use of the Bessel 
functions. The calculated transmission coefficients here differ from those in [15] in that 
there is not so much fine structure and there are small deviations in the resonant energies. 

The Z-V characteristics are calculated for both the 3D-2D and the 2D-1D cases. The 
conclusion is that the shapes of the Z-V characteristics for these two cases are approxi- 
mately the same at low Fermi energies. The effect of structural symmetry is considered 
numerically. The results show that a larger peak-to-valley ratio can be obtained by 
modulation of the widths of the two barriers. 
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